## 佳构 STRAT 软件综合应用:建模错误排除

(上海佳构软件科技有限公司, 2021.1)

| 【目录】               |    |
|--------------------|----|
| 1. Strat 计算错误排除    | 1  |
| 2. 网格荷载不完整处理       | 2  |
| 视平面展开技术,与蒙皮机制      | 3  |
| 3. 单元整合报错处理        | 6  |
| 4. 一柱双梁, 三维偏心问题的排除 | 8  |
| 5. 地下室外墙, 模型异常排除   | 10 |
| 6、单元整合技巧:多斜撑复杂结构   | 13 |

## 1. Strat 计算错误排除

\*\*严重错误,LU分解刚度矩阵对角元素为负。对应节点: 194 ---计算不成功. 请打开Plots、找到出错节点位置,排除模型错误.

### 1) Plots 找位置

打开后处理 Plots(未经过 Strat 计算也能打开 Plots。注意不用 Archi,因为 Archi 内单元有改变)。运行查找命令(Find,F),输入节点序号,将有红框显示节点位置。

注意几点:

- 1) 显示单线图,更易于看清节点。
- 2) 切换三维、并显示"全部"楼层,使所有图形显示。
- 3) 先"前视图"查所处楼层,再在楼层内找点。
- 4) "Ctrl+右键"图形对话框,显示节点编号。

#### 2) 异常处理

查看该节点周边结构,会发现布置异常。例如,单元悬空、未交点分开、剖分紊乱等,再返回 Prep 调整模型。



查找Find命令、F4全部楼层、切换单线图



#### 3) 显示完整报错信息

由于 Strat 屏幕翻页,出错信息往往不能完全显示。

打开 Strat 屏幕提示对应文档 ifo.txt。在集成窗口"查看结果文件"、或 Plots 文档处打开,如下图。

注意: ifo.txt 作为同步文档,在 Strat 关闭时才完整输出。打开之前,需先关闭 Strat 模块。



打开 ifo.txt, 查看完整信息

## 4) 节点在空位置处——刚性楼层主节点错误

Plots 找点发现在空位置,此时该点为刚性楼层主节点。图形内容对话框内显示"主从节点",会看到出错节点为主节点。如下图。

主节点处集中了整个楼层的平动刚度,楼层内其他构件的异常都会反映在主节点上。



为确定异常单元的具体位置,需取消刚性楼层。

在 Prep 楼层对话框内,"楼面刚性"选"部分",然后选中该层,双击或点"修改"按钮,设单 层为非刚楼层,如下图。

然后生成\_Sta 文件, Strat 计算,报错位置即为异常构件的具体位置。

异常排除后,再恢复楼层对话框的刚性楼层设置。



Prep 楼层对话框设单层"非刚"

## 2. 网格荷载不完整处理

板壳(网格荷载)将板面荷载导算到周边梁墙上,其本身有相对独立的几何边。面显示可以看到 其边界。网格边界与周边梁、墙、板不匹配的为不完整网格,用颜色区分并图放大。如下图。



有三处检测网格完整性: 板壳完整性检测(DeckWhole,ddw)、单元整合(ElemConform,ec)、生成 Sta 文件。如下图。



## 产生原因:

1) 梁格改变但网格边界未同步,如上图。面显示时可以直接针对网格边界操作,例如拉伸梁 格同时拉伸网格边。

2) 单元整合导致梁格改变。基于优化结构受力原因,当梁两端存在同向三维偏心时,单元整 合会把三维偏心转换为水平偏心同时改变梁轴线,会导致荷载网格不完整。由于网格荷载指向梁实 际轴线,单元整合形成的梁端三维偏心不会引起网格不完整(如梁轴线不交会于一点、或梁靠近墙 端部等情况新增三维偏心)

3) 导入 e2k 模型的网格荷载。当有梁端三维偏心时, e2k 导入网格到端点, STRAT 网格到梁实 际轴线。此外, e2k 三角形网格的边中点报错(属于漏洞, 多于三边的网格容许边中点), 各软件导 出时都拆分成两个网格, 也会检测不完整。如下图。



**排除**: 不规整网格重新款选生成就可以(命令 Deck,简写 dd),原有板厚、荷载均会保留。注意 F5 选项中"已有板壳规整",这样空位置不新形成新网格。 **技巧**: 充分利用三维图形优势,只要没有斜楼板、坡屋面、楼梯斜板,可以整个工程一次框选 规整网格,如下图。注意图形侧面展开,不要"前视图"。对于错层、夹层、高低板,合理控制选 项,也能整体一次框选。

| の一方で                                                                              | 出業             | ₩                | 地域     | <b>→</b><br>寸点 | <b>」</b><br>改荷                                      | 和成载                                                                          | <b>♀</b><br>高亮<br>▼           | ×<br>ľ          |
|-----------------------------------------------------------------------------------|----------------|------------------|--------|----------------|-----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|-----------------|
| <ul> <li>読券数</li> <li>网格荷载。</li> <li>超元 [弹板],</li> <li>空心板</li> <li>设置</li> </ul> | 板厚(m)<br>板厚(m) | 0.12<br>0.3<br>1 | 5选<br> |                | 已有板形<br>(用于部)<br>柱 不选<br>道 限水平<br>阿水平<br>阿水平<br>阿水平 | 売规整(<br>) イ 完 盤<br>り イ 完 盤<br>力<br>(基 础)<br>列格<br>(<br>樹<br>)<br>(<br>樹<br>) | 全位不親<br>細村框送雪<br>些底边)<br>层面内) | )<br>f加)<br>重整) |

选中"已有板壳规整"



三维侧视图, 框选整个工程一次性网格规整

## ✓补充说明:视平面展开技术,与蒙皮机制

视平面展开是 STRAT 特有的一项重要技术,用于板壳(超元/网格荷载)生成、样条曲面(空间网格内拟合样条曲面)、网格网架(空间网格内布设网架)、网格成图(空间网格内布板)等功能,形成任意空间曲面的操作机制。

**视平面展开**即将任意空间网格,在视图平面内(即屏幕图形)展开,各网格完全不重叠。如下图多坡屋面、 球面穹顶。

空间曲面视平面展开后,即由杆件实际**空间连接关系**,一次性形成梁格围合而成的空间网格。该方法适应 任意空间网格——总可以找到合适的视角使得曲面完全展开(球形全封闭曲面可以分两部分操作)。



**视平面重叠**,将导致重叠网格及周边网格缺失。如下图,整体柱面、局部凹凸,完全视平面展开一次性形成全部网格荷载,视图重叠则局部缺失,重叠越多、缺失越多。

对缺失的部位,再次框选生成网格。程序会检测梁格内是否已有网格,已有将不再生成,可以较大范围框选、而不必担心网格重叠。



#### 多重网格

前面**视平面重叠**指的是一个连续梁格的重叠。如梁格不连续、相互脱开成**多重网格**,重叠不受影响。 如下图柱面屋盖,上下两层梁格之间无杆件相连、完全脱开,则上下梁格视平面重叠不受影响。只需确保 每个连续梁格内部网格不重叠,即可一次框选同时生成上下两层网格。

如球面穹顶为网架,关闭腹杆,则上弦、下弦组成的内外曲面完全按脱开,在确保两曲面视平面展开的情况下,可一次性框选形成内外两层网格。如下图。



穹顶网架,关闭腹杆、上下弦曲面脱开。视平面展开后一次性形成两层网格

## 多重网格,用于多高层

多高层利用网格荷载导算楼面荷载,但上下楼面有柱、墙连接。

"板壳.边输入"命令(Deck,dd)有 F5 选项,排除柱、墙(墙只取顶边线),这样仅有水平梁、墙顶边组成网格,上下楼面的网格相互脱开,成为各自独立的多重网格。

这样可以**多个楼层**、甚至**整个工程**可以一次性框选生成全部网格荷载。注意此时需**侧视图**、使各楼面视 平面展开(不能是前视图、后视图)。如下图。

如有斜撑、楼梯斜梁, 通过"限水平网格"排除。

如有楼梯平台、错层夹层,可以通过"限水平网格(楼层面内)"排除。如下图。



通过选项排除斜撑、楼梯斜梁、楼梯平台, 使各楼面网格脱开

#### 如何选择多个楼层?

先前视图(或后视图、左视图)框选部分楼层。选择完毕后,按下"Ctrl+鼠标中间"拖动旋转视图,使各楼 面视平面展开,再"按右键"结束选择,即可针对部分楼层形成网格荷载。

注意: 需在"按右键"结束选择之前旋转视图。

旋转视图,除"Ctrl+鼠标中间"外,其他命令均可以。



#### 蒙皮机制(Z 正向表面),与视平面展开

蒙皮机制自动判断整体坐标Z正向面。

优点:操作简化。不需视平面展开,也不需关闭网格面之外的其他构件。

缺点:不能多重网格。仅针对相对简单的曲面有效,复杂曲面仍需视平面展开。



蒙皮机制,任意视图角度,且下弦、腹杆可同时打开



蒙皮机制,特别复杂曲面不能完备处理

## 3. 单元整合报错处理

"单元整合"(ElemConform, ec)是 Prep 规整结构模型的重要命令,使用频度很高。

包含如下功能:

1) 墙合理合并和细分,满足 STRAT 墙元计算要求。梁靠近墙端部(如小于 0.3m)自动加刚臂。

2) 交点分图。内部调用"交点分图"命令(TransDot,tr)。检测各类图形轴线相交

3) 轮廓碰撞。检测梁柱、弧梁、墙的实际三维轮廓相交,作为轴线相交(交点分图)的重要补充。 轮廓在端部相交的形成梁柱、墙端三维偏心。轮廓在梁柱、墙中间相交的,先在交点处断开,然后 再形成三维偏心。

4) 删除完全重叠梁柱、弧梁、墙板。删除几何形状异常单元。

5) 合并被细分的梁柱、弧梁。(STRAT 节点完全程序控制, 细分梁柱的合并不通过删节点)

6) 整合部分重叠的梁柱、弧梁。检测部分重叠的墙板。

7) 网格荷载完整性检测。

单元整合的部分功能手工可以替代,例如交点分图、细分构件的合并。部分功能涉及单元优化, 如墙的合理合并和细分,手工操作不可替代。



## 功能独立

单元整合包含全部模型规整、优化的功能,内容很多,但各项功能独立。可以先点"全否"、然 后选择一项或多项处理。

如仅选"合并细分的线、弧单元"合并细分单元,仅选"整合部分重叠的线、弧单元"规整既有 细分、又有重叠的单元,如下图。

当梁柱、墙轴线节点处不相交时,可以仅选"轮廓碰撞"处理梁柱节点连接。

点"选择图形整合"按钮,将选择部分图形整合,"整个工程整合"将针对全部单元。



#### 结果显示

单元整合之后显示整合结果,异常、不合理的单元用红色显示,正常单元暗色显示。再次点击 单元整合按钮 ,或输入命令(ElemConform,ec)结束显示。退出后如需继续看点击"**显示前次结果**" 按钮。

显示整合结果时,按 F5 调图形选项,可以查看全部异常类型、或某一单项,如下图。可以"仅 显示异常单元",这样可以大范围框选修改或删除。

| 显示[单元整合]结果:                      | "单元整合"结果查看 X           |                               |
|----------------------------------|------------------------|-------------------------------|
| A: 参数不完整,或板局部糸错误<br>E: 面单元之间部分重叠 | F5选项<br>查看类型: X:悬空,暴 ✓ | ▲ 具空, 具建 ~<br>全部<br>A:参数, 板局部 |
| F: 面、线里元部分重叠                     | 仅显示异常单元: 否  🗸          | B:面单元重叠<br>F:面.线重叠<br>G:单元相交  |
| X: 単元急空、急臂<br>L: 梁上荷载错误          |                        | L:荷载错误                        |
| 用/次点击按钮结束显示,Fb有单坝                |                        |                               |

#### 结果处理

部分整合异常的结果,需要处理,否则导致计算错误。

1) "X. 单元悬空、悬臂"。

**悬臂单元**一般不会引起计算中断,但需要处理。梁柱悬臂多数都是一端没有有效连接。柱悬臂 会导致结构局部大变形、受力异常(后处理 Plots 看变形动画能明显看出)。柱悬臂检测包含柱底约束, 底层柱无嵌固约束(无"Z=0 高度嵌固"设定或基底不等高),会显示悬臂。梁悬臂时,如连接端设了 铰接,也会导致计算中断。

**悬空单元**必须删除,不然会导致计算中断。

e2k 导入模型中,墙偏心用刚臂梁替代,高差梁端部也用刚臂梁连接。"单元整合/轮廓碰撞"检测到杆端轮廓实际连接,会设置三维偏心刚臂、且优化节点连接,往往会导致原有的刚臂梁悬空,如下图所示。F5 选择仅显示悬空悬臂单元,确认是多余的原刚臂梁后,框选删除。



高差梁处的原有刚臂梁,轮廓碰撞形成三维偏心刚臂后形成悬空构件(左实体图,右单线图)





F5 选项, 仅显示悬空构件, 框选删除

## 2) "G. 单元相交"。

**单元相交**需要看实际情况。如确实是未连接会引起计算中断、或者改变受力,需要处理。处理 方法同上,可用交点分图命令(tr)形成交点。

有些不需要处理。如下图,转换梁与墙轴线之间有缝隙,轮廓碰撞在墙下点加三维偏心刚臂连接,横向梁也正确交会于同一点,但横向梁实际轴线与墙底边相交、因此程序提示"G"错误——这种情况不需要处理。



墙与横向梁检测相交(左实体图, 右单线图)



转换梁与墙脱开,横向梁轴线与墙相交

#### 3) 其他异常

结合实际情况处理。很多是警示,可以不处理。



一柱双梁,由于导入模型或此前处理失误,连接紊乱。按如下步骤排除:

a) 删除三维偏心,使杆端简单化。如梁轴线或水平偏心有偏差,也需删除水平偏心。

b) 延伸位置正确的梁, 删除错误梁, 然后交点分图。交点分图形成琐碎的小梁, 可以不管。

c) 再行单元整合,注意选中"轮廓碰撞"功能。可以部分选择整合,特别复杂情况需要多次、 重复整合。

d) 不显示三维偏心, 如果所有梁柱都连接到一个节点, 模型即正确。



**删除三维偏心**: Depart, dt, 在对话框底边点"删除三维偏心"按钮, 如下图。 **删除水平偏心**: BeanOff, f, 在命令行内输入字符 c 选 "C 取消"选项, 如下图。



## 5. 地下室外墙, 模型异常排除

由于多次操作、且早期单元整合、轮廓碰撞功能不成熟,造成的地下室外墙异常。排除步骤:



地下室外墙,模型紊乱

### 1) 简化图面

a) 切换三维显示状态, 各层都显示。

b) 关闭板壳(荷载/超元)、边线荷载等次要图形。

c) 用 "XY 坐标范围控制"以简化图面。鼠标点选坐标范围时,点横向小梁的端点、中点,这样 与墙相交的横梁都能显示。



XY 坐标范围控制, 点选横向梁端点、中间作为范围坐标。

## 2) 删除梁、柱、墙端三维偏心

可以框选删除,原有正确的、错误的偏心都删除,便于后面操作。删除三维偏心不改变构件位置。需要设三维偏心的位置,后续单元整合会重新加上。



删除所有三维偏心

## 3) 结合单线图、实体图, 查看缺失的柱、墙。

由于三维偏心已删除,实体图显示的是构件真实长度。

在三维状态下,直接调整这些柱墙。

短 柱:用延伸命令(Extend,ee),向墙上下边延伸。

梯形墙:用拉伸命令(Stretch,s),将内缩点拉到正确位置。也可以把梯形墙直接删除,把附近的 矩形墙复制过来,节点不对正的拉伸一下。





## 4) 墙斜边拉伸,选择图形显示

二层的梯形墙、需要单独选中节点。可以用选择显示功能(ViewSel,vv),临时只显示该墙与定位柱,然后拉伸。



选择显示需操作的三角墙、定位柱

## 5) 下图右侧柱: 3D 实体存在、而单线简图缺失

可能是误操作,右侧柱设置了很大的水平偏心(XY 平面状态下,显示水平偏心 3.15m),实际右柱与左柱重合了。

排除:删除右柱,把左柱、或其他柱复制过来。也可以把上层柱延伸到墙底边,这样柱截面、偏心都不改变。延伸的柱交点分图(Tr)断开,也可以不断开,因为后面单元整合也可以断开。



3D 图有右柱

简图右柱缺失(左柱处编号重合)

### 6) 上下墙脱开对齐。

由于上下层分别建模,上下墙之间有缝隙、脱开了。

用节点对齐命令(Aline,a)。由于墙面平行 X 轴,选择 x 坐标对齐,选一个位置正确的点作为对齐 基准点。

最大距离可以设小点,例如 0.3m(大于缝隙距离、小于横向梁的最小长度),这样可以一次性框选 所有图形进行对齐。横梁在墙面之外的远端点,由于大于最大距离将保持不变。



## 7) 最终单元整合

调整后的模型,运行单元整合(ec)。可采用默认设置,选择图形整合以加快速度。框选所有显示 图形整合。可以多次整合。

前面调整过程中,会有很多梁柱墙重叠、交点处未断开,这些单元整合都能自动排除。高低墙 相交处会自动形成节点、并细分墙。横梁连接柱、墙中央的也会自动处理。如下图所示。

单元整合有强大的图形处理能力,但**前提是图形不能缺失**,如短柱、梯形墙。因为单元整合处 理己有图形、不能自动添加图形。





单元整合后最终模型(自动清除重叠、关键点自动断开)

# 6、单元整合技巧:多斜撑复杂结构

可关闭"节点分图"、"轮廓碰撞连接"两个选项,以免斜撑、梁柱端部形成三维刚臂。 如同时有墙体,可设"梁近墙端刚臂,距离"为0,以免梁端形成三维刚臂。 部分空间桁架需要轮廓碰撞连接的,可"选择部分图形"框选部分图形操作。 轻钢住宅的墙体,可放专用图层"Web-W-",将不按普通墙体整合,以免被细分。







轻钢住宅专用图层